ФІЗИКА


7—9 класи

ПОЯСНЮВАЛЬНА ЗАПИСКА

Фiзика є фундаментальною наукою, яка вивчає загальнi закономiрностi перебiгу природних явищ, закладає основи свiторозумiння на рiзних рiвнях пiзнання природи i дає загальне обґрунтування природничо-наукової картини свiту. Сучасна фiзика, крiм наукового, має важливе соцiокультурне значення. Вона стала невiд’ємною складовою культури високотехноло­гiчного iнформацiйного суспiльства. Фундаментальний характер фiзичного знання як фiлософiї науки i методологiї природознав­ства, теоретичної основи сучасної технiки i виробничих технологiй визначає освiтнє, свiтоглядне та виховне значення шкiльного курсу фiзики як навчального предмета. Завдяки цьому в структурi освiтньої галузi вiн вiдiграє роль базового компонента природничо-наукової освiти i належить до iнварiантної складової загальноосвiтньої пiдготовки учнiв в основнiй i стар­шiй школах.

Фiзика як навчальний предмет структурно може бути представлена таким чином.

Загальновизнаною iдеєю сучасного навчання вважається йо­го вiдповiднiсть розвитку науки, а також тим методам пiзнання, якi в науцi є вирiшальними. Історично у класичнiй фiзицi склалося так, що спочатку нагромаджувалися факти, якi потiм систематизувалися й узагальнювалися. На їх пiдставi вченi висловлювали концептуальнi iдеї, пропонували теоретичнi моделi, завдяки яким факти отримували певну iнтерпретацiю. Згодом встановлювалися закони, формулювалися принципи, на основi яких створювалися теорiї. Такий пiзнавальний цикл фiзики спрямовувався на пояснення фiзичних явищ i процесiв оточуючого свiту загалом, а також супроводжувався практичним ви­користанням фiзичного знання для створення технiчних за­собiв дiяльностi людини i виробничих технологiй.

Головна мета навчання фiзики в середнiй школi полягає в розвитку особистостi учнiв засобами фiзики як навчального предмета, зокрема завдяки формуванню в них фізичних знань, наукового свiтогляду i вiдповiдного стилю мислення, екологiчної культури, розвитку в них експеримента­ль­них умiнь i дослiдницьких навикiв, творчих здiбностей i схильностi до креативного мислення. Вiдповiдно до цього змiст фiзичної освiти спрямовано на опанування учнями наукових фактiв i фундаментальних iдей, усвiдомлення ними сутi понять i законiв, принципiв i теорiй, якi дають змогу пояснити перебiг фiзичних явищ i процесiв, з’ясувати їхнi закономiрностi, характеризувати сучасну фiзичну картину свiту, зрозумiти науковi основи сучасного виробництва, технiки i технологiй, оволодiти основними методами наукового пiзнання i використати набутi знання в практичнiй дiяльностi. Його наскрiзними змiстовими лiнiями є категорiальнi структури, що узгоджуються з за­гальними змiстовими лiнiями освiтньої галузi “Природознавство”, а саме:

— речовина i поле;

— рух i взаємодiї;

— закони i закономiрностi фiзики;

— фiзичнi методи наукового пiзнання;

— роль фiзичних знань у життi людини i суспiльному розвитку.

Шкiльний курс фiзики побудовано за двома логiчно завершеними концентрами, змiст яких узгоджується зi структурою середньої загальноосвiтньої школи: в основнiй школi (7—9 кл.) вивчається логiчно завершений базовий курс фiзики, який закладає основи фiзичного знання; у старшiй школi вивчення фiзики вiдбувається залежно вiд обраного профiлю навчання: на рiвнi стандарту, академiчному або профiльному. В основнiй школi фiзику починають вивчати як окремий навчальний предмет, змiст якого i вимоги до його засвоєння є єдиними для всiх учнiв. Урахування пiзнавальних iнтересiв учнiв, розвиток їхніх творчих здiбностей i формування схильностi до навчання фiзики здiйснюється завдяки особис­тiсно орiєнтованому пiдходу, запровадженню факультативних курсiв i проведенню iндивiдуальних занять i консультацiй за рахунок варiативної складової навчального плану.

У старшiй школi загальноосвiтня пiдготовка з фiзики продовжується на засадах профiльного навчання. Змiст фiзичної освiти та вимоги до його засвоєння залежать вiд обраної навчальної програми: на рiвнi стандарту курс фiзики обмежується обов’язковими результатами навчання, тобто мiнiмально необхiдною сумою знань, якi мають головним чином свiтоглядне спрямування; на академiчному рiвнi закладаються базовi знання з фiзики, достатнi для продовження навчання за напрямами, де потрiбна вiдповiдна пiдготовка з фiзики; на рiвнi профiльного навчання в учнiв формуються фундаментальнi знання з фiзики, оскiльки з їх удосконаленням учнi здебiльшого пов’язують своє майбуття в професiйному зростаннi.

В основнiй школi закладаються основи фiзичного пiзнання свiту: учнi опановують суть основних фiзичних понять i законiв, оволодiвають науковою термiнологiєю, основними методами наукового пiзнання та алгоритмами розв’язування фiзичних задач, у них розвиваються експериментальнi вмiння i дослiдницькi навички, формуються початковi уявлення про фiзичну картину свiту.

Курс фiзики основної школи ґрунтується на пропедевтицi фiзичних знань, що вiдбувається на бiльш раннiх етапах навчання. Так, у початковiй школi молодшi школярi на уроках з рiзних предметiв ознайомлюються з проявами фiзичних явищ природи, засвоюють початковi вiдомостi з фiзики, оволодiвають елементарними навичками пiзнання природи. Особливого значення тут набуває спiввiдношення сенсорного еталона величини з конкретними властивостями тiл (маса, довжина, площа, об’єм, час, температура та iн.). Змiст фiзичної складової тут вiдображується змiстовими лiнiями спорiднених до природознавства освiтнiх галузей i групується навколо таких тем: людина як жива iстота (нормальнi умови життєдiяльностi — температура, вологiсть, тиск, земне тяжiння, зiр, слух, тактильнi дiї, довжина кроку тощо); мiй будинок (умови побуту, побутовi прилади, житлова енергетика тощо); моя вулиця, моє мiсто (рух транс­порту); моя планета — Земля (Сонячна система, Земля i Мiсяць, освоєння космосу тощо).

У 5—6 класах здобутi ними фiзичнi знання розвиваються в основному завдяки дослiдно-експериментальнiй дiяльностi на уроках природознавства, вивчення технологiй, математики, пiд час екскурсiй у природу; поповнюється їхнiй термiнологiчний апарат, набувають емпiричного сенсу окремi фiзичнi термiни (швидкiсть, маса, температура, час, механiчний рух, теплота, атом тощо). Змiст iнтегрованого курсу природознавства зосереджено головним чином навколо понять, якi мають загальнонауковий i мiжпредметний характер — початковi вiдомостi про будову речовини, атом i молекула, простiр i час, енергiя тощо. Навчальна дiяльнiсть учнiв спрямовується на подолання протирiччя мiж науковим сенсом фiзичного знання i буденним досвiдом учнiв, на трансформацiю їхньої буденної свiдомостi в наукову.

Завданнями курсу фiзики основної школи є:

— сформувати в учнiв базовi фiзичнi знання про явища природи, розкрити iсторичний шлях розвитку фiзики, ознайомити їх з дiяльнiстю та внеском вiдомих зарубiжних i вiтчизняних фiзикiв;

— розкрити суть фундаментальних наукових фактiв, основних понять i законiв фiзики, показати розвиток фундаментальних iдей i принципiв фiзики;

— сформувати в учнiв алгоритмiчнi прийоми розв’язування фiзичних задач та евристичнi способи пошуку розв’язку проб­лем;

— сформувати i розвинути в учнiв експериментальнi умiння i дослiдницькi навички, умiння описувати i систематизувати результати спостережень, планувати i проводити невеликi експериментальнi дослiдження, проводити вимiрювання фiзичних величин, робити узагальнення й висновки;

— розкрити роль фiзичного знання в життi людини, су­спiльному виробництвi й технiцi, сутнiсть наукового пiзнання засобами фiзики, сприяти розвитку iнтересу школярiв до фiзики;

— спонукати учнiв до критичного мислення, застосовувати набутi знання в практичнiй дiяльностi, для адекватного вiдображення природних явищ засобами фiзики;

— сформувати в них початковi уявлення про фiзичну картину свiту, на конкретних прикладах показати прояви моральностi щодо використання наукового знання в життєдiяльностi людини i природокористуваннi.

Засвоєння учнями системи фiзичних знань та здатнiсть застосовувати їх у процесi пiзнання i в практичнiй дiяльностi є одним із головних завдань навчання фiзики в середнiй школi. Ядро змiсту фiзичної освiти складають науковi факти i фундаментальнi iдеї, методи фізичної науки, поняття i моделi, закони i теорiї, покладенi в основу побудови шкiльного курсу фiзики. Його системоутворюючими елементами є:

— чуттєво усвiдомленi уявлення про основнi властивостi та явища оточуючого свiту, якi стають предметом вивчення в певному роздiлi фiзики (наприклад, механiчний рух у його буденному сприйняттi як перемiщення в просторi, просторово-часовi уявлення тощо);

— основнi поняття теоретичного базису (наприклад, для механiки — це швидкiсть, прискорення, сила, маса, iмпульс, енергія) та ідеї та принципи, що їх об’єднують (вiдноснiсть руху), необхiднi для усвiдомлення сутi перебiгу фiзичних явищ i процесiв;

— абстрактнi моделi, покладенi в основу теоретичної системи (матерiальна точка, iнерцiальна система вiдлiку тощо);

— формули, рiвняння i закони, що вiдтворюють спiввiдношення мiж фiзичними величинами (рiвняння руху, закони Ньютона тощо);

— рiзноманiтнi застосування фiзичних знань до розв’язання практичних завдань та наслiдки їх використання в пiзнавальнiй практицi (розрахунок гальмiвного шляху, вiдкриття планети Уран тощо).

Фiзика — експериментальна наука. Тому ця її риса визначає низку специфiчних завдань шкiльного курсу фiзики, спрямованих на засвоєння наукових методiв пiзнання. Завдяки навчальному фізичному експерименту учні оволодівають досвідом практичної діяльності людства в галузі здобуття фактів та їх попереднього узагальнення на рівні емпіричних уявлень, понять і законів. За таких умов він виконує функцію методу навчального пізнання, завдяки якому у свідомості учня утворюються нові зв’язки і відношення, формується суб’єктивно нове особистісне знання. Саме через навчальний фізичний експеримент найефективніше здійснюється діяльнісний підхід до навчання фізики.

З iншого боку, навчальний фiзичний експеримент дидактично забезпечує процесуальну складову навчання фiзики, зокрема формує в учнiв експериментальнi вмiння i дослiдницькi навички, озброює їх iнструментарiєм дослiдження, який стає засобом навчання.

Таким чином, навчальний фiзичний експеримент як ор­га­нiчна складова методичної системи навчання фiзики забезпечує формування в учнiв необхiдних практичних умiнь, дослiдницьких навичок та особистiсного досвiду експериментальної дiяльностi, завдяки яким вони стають спроможними у межах набутих знань розв’язувати пiзнавальнi завдання засобами фiзичного експерименту. У шкiльному навчаннi вiн реалiзується у формi демонстрацiйного i фронтального експерименту, лабораторних робiт, робіт фізичного практикуму, позаурочних дослiдiв i спостережень тощо і розв’язує такi завдання:

— формування конкретно-чуттєвого досвiду i розвиток знань учнiв про навколишнiй свiт на основi цiлеспрямованих спостережень за плином фiзичних явищ i процесiв, вивчення властивостей тiл та вимiрювання фiзичних величин, усвiдомлення їхніх суттєвих ознак;

— встановлення i перевiрка засобами фiзичного експерименту законiв природи, вiдтворення фундаментальних дослiдiв та їхнiх результатiв, якi стали вирiшальними у розвитку i становленнi конкретних фiзичних теорiй;

— залучення учнiв до наукового пошуку, висвiтлення логiки наукового дослiдження, що сприяє виробленню в них до­слiдницьких прийомiв, формуванню експериментальних умiнь i навичок;

— ознайомлення учнiв з конкретними проявами i засобами експериментального методу дослiдження, зокрема з рiзними способами i методами вимiрювань — порiвняння з мiрою, безпосередньої оцiнки, замiщення, калориметричним, стробоско­пiчним, осцилографiчним, зондовим, спектральним тощо;

— демонстрацiя прикладного спрямування фiзики, розвиток полiтехнiчного світогляду i конструкторських здiбностей учнiв.

У системi навчального фiзичного експерименту особливе мiсце належить фронтальним лабораторним роботам i фiзичному практикуму, якi здiйснюють практичну пiдготовку учнiв. За змiстом експериментальної дiяльностi вони можуть бути об’єд­нанi в такi групи:

— спостереження фiзичних явищ i процесiв (дiї магнiтного поля на струм, броунiвського руху, iнтерференцiї та дифракцiї свiтла, суцiльного та лiнiйчастого спектрiв тощо);

— вимiрювання фiзичних величин i констант (густини та питомої теплоємностi речовини, прискорення вiльного падiння, коефiцiєнта тертя ковзання, модуля пружностi, питомого опору провiдникiв, показника заломлення свiтла тощо);

— вивчення вимiрювальних приладiв (мензурки, важiльних те­резiв, термометра, амперметра, вольтметра, психрометра, оммет­ра то­що) i градуювання шкал (динамометра, спектроскопа, тер­мiстора тощо);

— з’ясування закономiрностей i встановлення законiв (умов рiвноваги важеля, закону збереження енергiї, закону Ома, другого закону Ньютона, закону збереження iмпульсу тощо);

— складання простих технiчних пристроїв i моделей та дослiдження їхнiх характеристик (електромагнiта, двигуна пос­тiйного струму, напiвпровiдникового дiода i транзистора, ра­дiо­приймача, дифракцiйної ґратки, лiнз тощо).

Виконання лабораторних робiт передбачає володiння учнями певною сукупнiстю умiнь, що забезпечують досягнення необхiдного результату. У кожному конкретному випадку цей набiр умiнь залежатиме вiд змiсту дослiду i поставленої мети, оскiльки визначається конкретними дiями учнiв пiд час виконання лабораторної роботи. Разом з тим вони є вiдтворенням узагальненого експериментального вмiння, яке формується всi­єю системою навчального фiзичного експерименту i має склад­ну структуру, що мiстить:

a) умiння планувати експеримент, тобто формулювати його мету, визначати експериментальний метод i давати йому теоретичне обґрунтування, складати план дослiду i визначати найкращi умови його проведення, обирати оптимальнi значення вимiрюваних величин та умови спостережень, враховуючи наявнi експериментальнi засоби;

б) умiння пiдготувати експеримент, тобто обирати необхiдне обладнання i вимiрювальнi прилади, збирати дослiднi установки чи моделi, рацiонально розмiщувати приладдя, домагаючись безпечного проведення дослiду;

в) умiння спостерiгати, визначати мету i об’єкт спостереження, встановлювати характернi риси плину фiзичних явищ i процесiв, видiляти їхнi суттєвi ознаки;

г) умiння вимiрювати фiзичнi величини, користуючись рiз­ни­ми вимiрювальними приладами i мiрами, тобто визначати цiну подiлки шкали приладу, її нижню i верхню межу, знiмати покази приладу;

д) умiння обробляти результати експерименту, знаходити значення величин, похибки вимiрювань (у старшiй школi), креслити схеми дослiдiв, складати таблицi одержаних даних, готувати звiт про проведену роботу, вести запис значень фiзичних величин у стандартизованому виглядi тощо;

е) умiння iнтерпретувати результати експерименту, описувати спостережуванi явища i процеси, вживаючи фiзичну тер­мiнологiю, подавати результати у виглядi формул i рiвнянь, функ­цiональних залежностей, будувати графiки, робити висновки про проведене дослiдження, виходячи з поставленої мети.

Очевидно, що формування такого узагальненого експериментального вмiння — процес довготривалий, який вимагає планомiрної роботи вчителя і учнів протягом усього часу навчання фiзики в основнiй i старшiй школах. Перелiченi в програмi демон­страцiйнi дослiди i лабораторнi роботи є мiнiмально необхiдними i достатнiми щодо вимог Державного стандарту базової і повної загальної середньої освіти. Проте залежно вiд умов i наявної матерiальної бази фiзичного кабiнету вчитель може замiнювати окремi роботи або демонстрацiйнi дослiди рiвноцiнними, використовувати рiзнi їх можливi варiанти. Вiн може доповнювати цей перелiк додатковими дослiдами, короткочасними експериментальними завданнями, збiльшувати їх кiлькiсть пiд час виконання фронтальних лабо­раторних робiт або фiзпрактикуму, об’єднувати кiлька робiт в одну тощо.

Залежно вiд змiсту дiяльностi учнiв навчальний фiзичний експеримент може бути:

a) репродуктивний, коли вiдповiднi експериментальнi зав­дання формують уміння, не вимагаючи самостiйного здобуття нового фiзичного знання, а лише пiдтверджують уже вiдомi факти й iстини або iлюструють теоретично встановленi твердження;

б) частково-пошуковий, коли пiд час їх виконання з’ясовується новий елемент знання як результат напiвсамостiйної пошукової дiяльностi учнiв;

в) дослiдницький, коли в результатi самостiйного виконання експерименту учнi роблять висновки та узагальнення, що мають статус суб’єктивно нового для них знання.

Кожний із цих видiв навчального фiзичного експерименту зай­має своє мiсце в системi урокiв фiзики i має свої межi застосування в навчальному процесi. Репродуктивний експеримент, як правило, використовують пiд час попереднього ознайомлення учнiв з фiзичним явищем або в процесi пiдтвердження їхнього повсякденного досвiду (наприклад, дослiди, що iлюструють явища iнерцiї та взаємодiї тiл, теплопровiднiсть тiл, вимiрювання довжини i маси, спостереження iнтерференцiї та дифракцiї свiтла), при вивченнi технiчних пристроїв та їх моделей (наприклад, вивчення електричного двигуна постiйного струму, будова i дiя фотореле на фотоелементi). Пiд час виконання лабораторних робiт вiн використовується з метою вироблення початкових експериментальних умiнь (наприклад, складання електричного кола та вимiрювання сили струму в рiзних його дiлянках) або на етапi закрiплення навчального матерiалу, наприклад, з метою перевiрки вивченого закону (вивчення закону збереження механiчної енергiї, ви­мiрювання заряду електрона електролiтичним способом тощо).

Частково-пошуковий експеримент вимагає особливої ор­ганiзацiї пiзнавальної дiяльностi учнiв, коли за незначної допомоги вчителя учнi встановлюють закономiрностi природи або характернi риси фiзичного явища (порiвняння кiлькостi теплоти при змiшуваннi води рiзної температури, залежнiсть ЕРС iндукцiї вiд швидкостi змiни магнiтного потоку тощо), вивчають певний спосiб вимiрювання фiзичної величини (визначення опору провiдника за допомогою амперметра i вольтметра, визначення показника заломлення скла тощо). Найчастiше цей вид навчального фiзичного експерименту застосовують зразу пiсля вивчення вiдповiдного явища, закономiрностi, поняття фiзичної величини, а також у фiзичному практикумi, який має важливе значення для закріплення знань. Проте iнколи його використовують на етапi вивчення нового навчального матерiалу, особливо коли учням необхiдно усвiдомити суттєвi ознаки фiзичних явищ (вивчення одного з iзопроцесiв, спос­тереження дiї магнiтного поля на струм тощо).

Пiд час проведення дослiдницького фiзичного експерименту учнi виявляють високий рiвень пiзнавальної самостiйностi, а отже, вони повиннi володiти вiдповiдними знаннями i мати певну практичну пiдготовленiсть, якi дають змогу їм iнтерпретувати одержанi результати i робити необхiднi висновки. Тому їх виконання потребує вiд учителя особливого вмiння керувати пiзнавальною дiяльнiстю учнiв, адже самостiйне здобуття ними нового знання не повинно пiти хибним шляхом, i тому має вiдбуватися пiд неухильним контролем з боку вчителя. Найчастiше даний вид експерименту застосовують пiд час узагальнення i систематизацiї знань або в процесi вивчення нового навчального матерiалу, коли учнi встановлюють певну закономiрнiсть чи закон (наприклад, виявлення умови рiвноваги важеля, з’ясування умов плавання тіл у рідині, дослідження залежності між тиском, об’ємом і температурою газу, дослідження залежності опору металів і напівпровідників від температури).

Кiлькiсне спiввiдношення мiж усiма цими видами навчального фiзичного експерименту не можна визначити нормативно, оскiльки на їх вибiр впливає багато чинникiв. Це й вiдповiднiсть обраного рiвня самостiйностi учнiв метi уроку, i пiдготовленiсть їх до сприймання навчального матерiалу на вiдповiдному рiвнi, i сам змiст дослiду, й умiння вчителя забезпечити на уроцi належний рiвень пiзнавальної активностi учнiв. У виборi конкретного його виду вчитель мусить керуватися тими мiркуваннями, що кожна демонстрацiя, кожне спостереження або лабораторна робота, кожний дослiд повинен, з одного боку, забезпечити ви­ко­нан­ня програмних вимог до експериментальної пiдготовки уч­нiв на певному освiтньому рiвнi, з iншого боку, розвивати в учнiв готовнiсть сприймати навчальний матерiал на опти­мально­му для них за пiзнавальними можливостями рiвнi актив­ностi.

Самостiйне експериментування учнiв, особливо в основнiй школi, необхiдно розширювати, використовуючи найпростiше обладнання, iнколи навiть саморобнi прилади i побутове обладнання. Такi роботи повиннi мати пошуковий характер, завдяки чому учнi збагачуються новими фактами, узагальнюють їх i роблять висновки. У процесi такої дiяльностi вони мають навчитися ставити мету дослiдження, обирати адекватнi методи i засоби дослiдження, планувати i здiйснювати експеримент, обробляти його результати i робити висновки.

Разом з тим не слiд забувати, що школярi, особливо старшокласники, мають пiднятися до теоретичного рiвня узагальнення, засвоїти не лише багатий фактологiчний матерiал та емпiричнi методи пiзнання, але й усвiдомити теоретичнi моделi, закони i принципи фiзики. Як зазначав А. Ейнштейн, у розвитку сучасної фiзики неможливо вiдокремити експериментальний i теоретичний методи, оскiльки вони завжди поруч, невiд’ємнi та взаємопов’язанi один з одним. Оволодiти теоретичним знанням i вмiнням його застосовувати в практичнiй дiяльностi людини — одне з основних завдань курсу фiзики. Тому шкiльний курс фiзики, зокрема старшої школи, структуровано за фундаментальними фiзичними теорiями — класична механiка, молеку­лярно-кiнетична теорiя й феноменологiчна термодинамiка, елект­родинамiка, квантова фiзика.

Засвоєння фiзичного знання значно полiпшується, якщо в основу навчально-пiзнавальної дiяльностi учнiв покласти плани узагальнюючого характеру, за якими розкривається суть того чи iншого поняття, закону, факту тощо. Так, змiст наукового факту (фундаментального дослiду) визначають:

— суть наукового факту чи опис дослiду;

— хто з учених встановив даний факт чи виконав дослiд;

— на пiдставi яких суджень встановлено даний факт або схематичний опис дослiдної установки;

— яке значення вони мають для становлення i розвитку фiзичної теорiї.

Для пояснення фiзичного явища необхiдно усвiдомити:

— зовнiшнi ознаки плину даного явища, умови, за яких воно вiдбувається;

— зв’язок даного явища з iншими;

— якi фiзичнi величини його характеризують;

— можливостi практичного використання даного явища, способи попередження шкiдливих наслiдкiв його прояву.

Сутнiсть поняття фiзичної величини визначають:

— властивiсть, яку характеризує дана фiзична величина;

— її означення (дефiнiцiя);

— формула, покладена в основу означення, зв’язок з iншими величинами;

— одиницi фiзичної величини;

— способи її вимiрювання.

Для закону це:

— формулювання закону, зв’язок мiж якими явищами вiн встановлює;

— математичний вираз закону;

— дослiдні факти, що привели до встановлення закону або підтверджують його справедливість;

— межi застосування закону.

Для моделей необхiдно:

— дати її опис або навести дефiнiцiю, що її визначає як iдеалiзацiю;

— встановити, якi реальнi об’єкти вона замiщує;

— з’ясувати, до якої конкретно теорiї вона належить;

— визначити, вiд чого ми абстрагуємося, чим нехтуємо, вводячи цю iдеалiзацiю;

— з’ясувати наслiдки застосування даної моделi.

Загальна характеристика фiзичної теорiї має мiстити:

— перелiк наукових фактiв, якi стали пiдставою розроблення теорiї, її емпiричний базис;

— понятiйне ядро теорiї, визначення базових понять i моделей;

— основнi положення, iдеї i принципи, покладенi в основу теорiї;

— рiвняння i закони, що визначають математичний апарат теорiї;

— коло явищ i властивостей тiл, якi дана теорiя може пояснити або передбачити їх плин;

— межi застосування теорiї.

Однiєю з найважливiших дiлянок роботи в системi навчання фiзики в школi є розв’язування фiзичних задач. Задачi рiзних типiв можна ефективно використовувати на всiх етапах засвоєння фiзичного знання: для розвитку iнтересу, творчих здiб­ностей i мотивацiї учнiв до навчання фiзики, пiд час постановки проблеми, що потребує розв’язання, в процесi формування нових знань учнiв, вироблення практичних умiнь учнiв, з метою повторення, закрiплення, систематизацiї та узагальнення засвоєного матерiалу, з метою контролю якостi засвоєння навчального матерiалу чи дiагностування навчальних досягнень учнiв тощо. Слiд пiдкреслити, що в умовах особистiсно орiєнтованого навчання важливо здiйснити вiдповiдний добiр фiзичних задач, який би враховував пiзнавальнi можливостi й нахили учнiв, рiвень їхньої готовностi до такої дiяльностi, розвивав би їхнi здiбностi вiдповiдно до освiтнiх потреб.

Розв’язування фiзичних задач, як правило, має три етапи дiяльностi учнiв:

1) аналiзу фiзичної проблеми або опису фiзичної ситуацiї;

2) пошуку математичної моделi розв’язку;

3) реалiзацiї розв’язку та аналiзу одержаних результатiв.

На першому етапi фактично вiдбувається побудова фiзичної моделi задачi, що подана в її умовi:

• аналiз умови задачi, визначення вiдомих параметрiв i величин та пошук невiдомого;

• конкретизацiя фiзичної моделi задачi за допомогою гра­фiчних форм (малюнки, схеми, графiки тощо);

• скорочений запис умови задачi, що вiдтворює фiзичну модель задачi в систематизованому виглядi.

На другому, математичному етапi розв’язування фiзичних задач вiдбувається пошук зв’язкiв i спiввiдношень мiж вiдомими величинами i невiдомим:

• вибудовується математична модель фiзичної задачi, робиться запис загальних рiвнянь, що вiдповiдають фiзичнiй моделi задачi;

• враховуються конкретнi умови фiзичної ситуацiї, що описується в задачi, здiйснюється пошук додаткових парамет­рiв (початковi умови, фiзичнi константи тощо);

• приведення загальних рiвнянь до конкретних умов, що вiд­творюються в умовi задачi, запис спiввiдношення мiж не­відомим і відомими величинами у формі часткового рів­няння.

На третьому етапi здiйснюються такi дiї:

• аналiтичне, графiчне або чисельне розв’язання рiвняння вiд­носно невiдомого;

• аналiз одержаного результату щодо його вiрогiдностi й реальностi, запис вiдповiдi;

• узагальнення способiв дiяльностi, якi властивi даному типу фiзичних задач, пошук iнших шляхiв розв’язку.

Слiд зазначити, що в навчаннi фiзики важливою формою роботи з учнями є складання ними задач, якi за фiзичним змiстом подiбнi до тих, що були розв’язанi на уроцi, наприклад обернених задач. Цей прийом досить ефективний для розвитку творчих здiбностей учнiв, їхнього розумового потенцiалу.

Наведений у програмі розподіл годин є орієнтовним. Учитель на власний розсуд може розподіляти навчальний матеріал за темами уроків, переставляти їх місцями в межах розділу, але так, щоб не порушувалася логічна послідовність. Також учитель має право довільно визначати кількість годин на вивчення теми або розділу.

Критерії оцінювання навчальних досягнень учнів з фізики

Під час визначення рівня навчальних досягнень з фізики оцінюється:

— рівень володіння теоретичними знаннями;

— рівень умінь використовувати теоретичні знання під час розв'язування задач чи вправ різного типу (розрахункових, експериментальних, якісних, комбінованих тощо);

— рівень володіння практичними вміннями та навичками під час виконання лабораторних робіт, спостережень і фізичного практикуму.

Критерії оцінювання рівня володіння учнями теоретичними знаннями

Рівні навчальних досягнень Бали
Критерії оцінювання навчальних досягнень
I. Початковий 1 Учень (учениця) володіє навчальним матеріалом на рівні розпізнавання явищ природи, з допомогою вчителя відповідає на запитання, що потребують відповіді «так» чи «ні»
2 Учень (учениця) описує природні явища на основі свого попереднього досвіду, з допомогою вчителя відповідає на запитання, що потребують однослівної відповіді
3 Учень (учениця) з допомогою вчителя зв'язно описує явище або його частини без пояснень відповідних причин, називає фізичні чи астрономічні явища, розрізняє буквені позначення окремих фізичних чи астрономічних величин
II. Середній 4 Учень (учениця) з допомогою вчителя описує явища, без пояснень наводить приклади, що ґрунтуються на його власних спостереженнях чи матеріалі підручника, розповідях учителя тощо
5 Учень (учениця) описує явища, відтворює значну частину навчального матеріалу, знає одиниці вимірювання окремих фізичних чи астрономічних величин і формули з теми, що вивчається
6 Учень (учениця) може зі сторонньою допомогою пояснювати явища, виправляти допущені неточності (власні, інших учнів), виявляє елементарні знання основних положень (законів, понять, формул)
III. Достатній 7 Учень (учениця) може пояснювати явища, виправляти допущені неточності, виявляє знання і розуміння основних положень (законів, понять, формул, теорій)
8 Учень (учениця) уміє пояснювати явища, аналізувати, узагальнювати знання, систематизувати їх, зі сторонньою допомогою (вчителя, однокласників тощо) робити висновки
9 Учень (учениця) вільно та оперативно володіє вивченим матеріалом у стандартних ситуаціях, наводить приклади його практичного застосування та аргументи на підтвердження власних думок
IV. Високий 10 Учень (учениця) вільно володіє вивченим матеріалом, уміло використовує наукову термінологію, вміє опрацьовувати наукову інформацію: знаходити нові факти, явища, ідеї, самостійно використовувати їх відповідно до поставленої мети
11 Учень (учениця) на високому рівні опанував програмовий матеріал, самостійно, у межах чинної програми, оцінює різноманітні явища, факти, теорії, використовує здобуті знання і вміння в нестандартних ситуаціях, поглиблює набуті знання
12 Учень (учениця) має системні знання, виявляє здібності до прийняття рішень, уміє аналізувати природні явища і робить відповідні висновки й узагальнення, уміє знаходити й аналізувати додаткову інформацію

Критерії оцінювання навчальних досягнень учнів при розв'язуванні задач

Визначальним показником для оцінювання вміння розв'язувати задачі є їх складність, яка залежить від:

1) кількості правильних, послідовних, логічних кроків та операцій, здійснюваних учнем; такими кроками можна вважати вміння (здатність):

— усвідомити умову задачі;

— записати її у скороченому вигляді;

— зробити схему або малюнок (за потреби);

— виявити, яких даних не вистачає в умові задачі, та знайти їх у таблицях чи довідниках;

— виразити всі необхідні для розв'язку величини в одиницях СІ;

— скласти (у простих випадках — обрати) формулу для знаходження шуканої величини;

— виконати математичні дії й операції;

— здійснити обчислення числових значень невідомих величин;

— аналізувати і будувати графіки;

— користуватися методом розмінностей для перевірки правильності розв’язку задачі;

— оцінити одержаний результат та його реальність.

2) раціональності обраного способу розв'язування;

3) типу завдання (з одної або з різних тем (комбінованого), типового (за алгоритмом) або нестандартного).

Початковий рівень (1-3 бали) Учень (учениця) уміє розрізняти фізичні чи астрономічні величини, одиниці вимірювання з певної теми, розв'язувати задачі з допомогою вчителя лише на відтворення основних формул; здійснює найпростіші математичні дії
Середній рівень (4 - 6 балів) Учень (учениця) розв'язує типові прості задачі (за зразком), виявляє здатність обґрунтувати деякі логічні кроки з допомогою вчителя

Достатній

рівень

(7 - 9 балів)
Учень (учениця) самостійно розв'язує типові задачі й виконує вправи з одної теми, обґрунтовуючи обраний спосіб розв'язку
Високий рівень (10 - 12 балів) Учень (учениця) самостійно розв'язує комбіновані типові задачі стандартним або оригінальним способом, розв'язує нестандартні задачі

Критерії оцінювання навчальних досягнень учнів при виконанні лабораторних і практичних робіт

При оцінюванні рівня володіння учнями практичними вміннями та навичками під час виконання фронтальних лабораторних робіт, експериментальних задач, робіт фізичного практикуму враховуються знання алгоритмів спостереження, етапів проведення дослідження (планування дослідів чи спостережень, збирання установки за схемою; проведення дослідження, знімання показників з приладів), оформлення результатів дослідження - складання таблиць, побудова графіків тощо; обчислювання похибок вимірювання (за потребою), обґрунтування висновків проведеного експерименту чи спостереження.

Рівні складності лабораторних робіт можуть задаватися:

— через зміст та кількість додаткових завдань і запитань відповідно до теми роботи;

— через різний рівень самостійності виконання роботи (при постійній допомозі вчителя, виконання за зразком, докладною або скороченою інструкцією, без інструкції);

— організацією нестандартних ситуацій (формулювання учнем мети роботи, складання ним особистого плану роботи, обґрунтування його, визначення приладів та матеріалів, потрібних для її виконання, самостійне виконання роботи та оцінка її результатів).

Обов’язковим при оцінюванні є врахування дотримання учнями правил техніки безпеки під час виконання фронтальних лабораторних робіт чи робіт фізичного практикуму.

Початковий рівень (1-3 бали) Учень (учениця) називає прилади та їх призначення, демонструє вміння користуватися окремими з них, може скласти схему досліду лише з допомогою вчителя, виконує частину роботи без належного оформлення
Середній рівень (4 - 6 балів) Учень (учениця) виконує роботу за зразком (інструкцією) або з допомогою вчителя, результат роботи учня дає можливість зробити правильні висновки або їх частину, під час виконання та оформлення роботи допущені помилки

Достатній

рівень

(7 - 9 балів)
Учень (учениця) самостійно монтує необхідне обладнання, виконує роботу в повному обсязі з дотриманням необхідної послідовності проведення дослідів та вимірювань. У звіті правильно й акуратно виконує записи, таблиці, схеми, графіки, розрахунки, самостійно робить висновок
Високий рівень (10 - 12 балів) Учень (учениця) виконує всі вимоги, передбачені для достатнього рівня, визначає характеристики приладів і установок, здійснює грамотну обробку результатів, розраховує похибки (якщо потребує завдання), аналізує та обґрунтовує отримані висновки дослідження, тлумачить похибки проведеного експерименту чи спостереження. Більш високим рівнем вважається виконання роботи за самостійно складеним оригінальним планом або установкою, їх обґрунтування.

/Files/images/poloski/49940293_1255645497_710323j4smf52bik.gif

МIНIСТЕРСТВО ОСВIТИ I НАУКИ, МОЛОДI ТА СПОРТУ УКРАЇНИ

ФIЗИКА

7–9 класи

Навчальна програма

2012

Навчальна програма з фізики для 7-9 класів підготовлена робочою групою у складі: О.І.Ляшенко, доктор педагогічних наук, професор, академік НАПН України (керівник групи); В.Г.Бар’яхтар, доктор фізико-математичних наук, професор, академік НАН України; Л.Ю.Благодаренко, доктор педагогічних наук, доцент; М.В.Головко, кандидат педагогічних наук, доцент; Ю.І.Горобець, доктор фізико-математичних наук, професор, член-кореспондент НАПН України; Т.М.Засєкіна, учитель фізики, кандидат педагогічних наук; В.Д.Карасик, учитель фізики, Заслужений учитель України, переможець Всеукраїнського конкурсу "Учитель року-2005"; О.В.Ліскович, завідувач лабораторії Миколаївського ОІППО; М.Т.Мартинюк, доктор педагогічних наук, професор, член-кореспондент НАПН України; І.Ю.Ненашев, учитель фізики, лауреат Всеукраїнського конкурсу "Учитель року-1996"; Н.А.Охрименко, методист Донецького ОІППО; В.Д.Сиротюк, доктор педагогічних наук, професор; М.І.Шут, доктор фізико-математичних наук, професор, академік НАПН України.

Пояснювальна записка

Фізика є фундаментальною наукою, яка вивчає загальні закономірності перебігу природних явищ, закладає основи світорозуміння на різних рівнях пізнання природи й надає загальне обґрунтування природничо-наукової картини світу. Сучасна фізика, крім наукового, має важливе соціокультурне значення. Вона стала невід’ємною складовою загальної культури високотехнологічного інформаційного суспільства.

Фундаментальний характер фізичного знання як філософії науки й методології природознавства, теоретичної основи сучасної техніки й виробничих технологій визначає освітнє, світоглядне та виховне значення шкільного курсу фізики як навчального предмета. Завдяки цьому в структурі освітньої галузі він відіграє роль базового компонента природничо-наукової освіти й належить до інваріантної складової загальноосвітньої підготовки учнів в основній і старшій школах.

Головна мета навчання фізики в середній школі полягає в розвитку особистості учнів засобами фізики як навчального предмета, зокрема завдяки формуванню в них предметної компетентності на основі фізичних знань, наукового світогляду й відповідного стилю мислення, розвитку експериментальних умінь і дослідницьких навичок, творчих здібностей і схильності до креативного мислення.

Відповідно до цього зміст фізичної освіти спрямовано на опанування учнями наукових фактів і фундаментальних ідей, усвідомлення ними суті понять і законів, принципів і теорій, які дають змогу:

- пояснити перебіг фізичних явищ і процесів і з’ясувати їхні закономірності;

- оволодіти основними методами наукового пізнання;

- охарактеризувати сучасну фізичну картину світу;

- зрозуміти наукові засади сучасного виробництва, техніки і технологій;

- використати набуті знання в повсякденній практичній діяльності.

Шкільний курс фізики побудовано за двома логічно завершеними концентрами, зміст яких узгоджується зі структурою середньої загально­освітньої школи:

1) в основній школі (7–9 класи) вивчається логічно завершений базовий курс фізики, який закладає основи фізичного знання;

2) у старшій школі вивчення фізики відбувається залежно від обраного профілю навчання.

В основній школі фізику починають вивчати як окремий навчальний предмет, зміст й вимоги до засвоєння якого є єдиними для всіх учнів. Урахування пізнавальних інтересів учнів, розвиток їхніх творчих здібностей і формування схильності до навчання фізики здійснюється завдяки особистісно орієнтованому підходу, запровадженню курсів за вибором, проведенню факультативних та індивідуальних занять і консультацій за рахунок варіативної складової навчального плану. Передбачається також можливість поглибленого вивчення фізики за спеціальною програмою.

Базовий курс фізики (7–9 класи) закладає основи фізичного знання: учні опановують суть основних фізичних понять і законів, оволодівають науковою термінологією, основними методами наукового пізнання та алгоритмами розв’язування фізичних задач, у них розвиваються експериментальні вміння й дослідницькі навички, формуються уявлення про фізичну картину світу. Він ґрунтується на тих знаннях з основ фізики, які учні отримали на більш ранніх етапах навчання, зокрема на уроках природознавства в початковій школі і 5 класі, а також на повсякденному досвіді пізнання навколишнього світу, якого учні набувають у житті.

Таким чином, завданнями курсу фізики основної школи є:

- сформувати в учнів базові фізичні знання про явища природи, розкрити історичний шлях розвитку фізики, ознайомити їх із діяльністю та внеском відомих зарубіжних й українських фізиків;

- розкрити суть фундаментальних наукових фактів, основних понять і законів фізики, показати розвиток фундаментальних ідей і принципів фізики;

- сформувати в учнів алгоритмічні прийоми розв’язування фізичних задач та евристичні способи пошуку розв’язків практичних життєвих проблем;

- сформувати й розвинути в учнів експериментальні вміння й дослідницькі навички, уміння описувати й оцінювати результати спостережень, планувати й проводити досліди та експериментальні дослідження, здійснювати вимірювання фізичних величин, робити узагальнення й висновки;

- розкрити роль фізичного знання в житті людини, суспільному виробництві й техніці, сутність наукового пізнання засобами фізики, сприяти розвитку інтересу школярів до фізики;

- спонукати учнів критично мислити, застосовувати набуті знання в практичній діяльності, виявляти ставлення до довкілля на засадах екологічної культури;

- сформувати в них уявлення про фізичну картину світу, на конкретних прикладах показати прояви моральності щодо використання наукового знання в життєдіяльності людини й природокористуванні.

Засвоєння учнями системи фізичних знань та здатність застосовувати їх у процесі пізнання і в практичній діяльності є одним із головних завдань навчання фізики в середній школі. Тому системотворчими елементами шкільного курсу фізики виступають:

- чуттєво усвідомлені уявлення школярів про основні властивості та явища навколишнього світу, які стають предметом вивчення в певному розділі фізики (наприклад, механічний рух у його буденному сприйнятті як переміщення в просторі, просторово-часові уявлення тощо);

- основні поняття теоретичного базису (наприклад, для механіки це швидкість, сила, маса, енергія), ідеї та принципи, що їх об’єднують (приміром, відносність руху), необхідні для усвідомлення суті перебігу фізичних явищ і процесів;

- абстрактні моделі, покладені в основу теоретичної системи (матеріальна точка, інерціальна система відліку тощо);

- формули, рівняння й закони, що відтворюють співвідношення між фізичними величинами;

- різноманітні застосування фізичних знань для пояснення життєвих ситуацій або розв’язання практичних завдань, а також наслідки їх використання в пізнавальній практиці (розрахунок гальмівного шляху, теплового балансу, електричних кіл, побудова зображень тощо).

Як відомо, фізика ґрунтується на експерименті. Тому ця її особливість визначає низку специфічних завдань шкільного курсу фізики, спрямованих на засвоєння наукових методів пізнання. Завдяки навчальному фізичному експерименту учні оволодівають досвідом практичної діяльності людства в галузі здобуття фактів та попереднього їх узагальнення на рівні емпіричних уявлень, понять і законів. За таких умов експеримент виконує функцію методу навчального пізнання, завдяки якому у свідомості учня утворюються нові зв’язки й відношення, формується особистісне знання. Саме через навчальний фізичний експеримент найефективніше здійснюється діяльнісний підхід до навчання фізики.

З іншого боку, навчальний фізичний експеримент дидактично забезпечує процесуальну складову навчання фізики, зокрема формує в учнів експериментальні вміння й дослідницькі навички, озброює їх інструментарієм наукового дослідження, який стає засобом навчання.

Таким чином, навчальний фізичний експеримент як органічна складова методичної системи навчання фізики забезпечує формування в учнів необхідних практичних умінь, дослідницьких навичок та особистісного досвіду експериментальної діяльності, завдяки яким вони стають спроможними у межах набутих знань розв’язувати пізнавальні завдання засобами фізичного експерименту. У шкільному навчанні він реалізується у формі демонстраційного і фронтального експерименту, лабораторних робіт, фізичного практикуму, навчальних проектів, позаурочних дослідів тощо.

У системі навчального фізичного експерименту особливе місце належить лабораторним роботам, які забезпечують практичну підготовку учнів. Виконання лабораторних робіт передбачає оволодіння учнями певною сукупністю умінь, які в цілому складають узагальнене експериментальне вміння. Воно має складну структуру, елементами якої є:

a) уміння планувати експеримент, тобто формулювати його мету, визначати експериментальний метод і давати йому теоретичне обґрунтування, складати план досліду й визначати найкращі умови для його проведення, обирати оптимальні значення вимірюваних величин та умови спостережень, враховуючи наявні експериментальні засоби;

б) уміння підготувати експеримент, тобто обирати необхідне обладнання й вимірювальні прилади, збирати дослідні установки чи моделі, раціонально розташовувати прилади, досягаючи безпечного проведення досліду;

в) уміння спостерігати, визначати мету й об’єкт спостереження, встановлювати характерні ознаки перебігу фізичних явищ і процесів, виділяти їхні суттєві ознаки;

г) уміння вимірювати фізичні величини, користуючись різними вимірювальними приладами та мірилами, визначати ціну поділки шкали приладу, знімати покази приладу;

ґ) уміння обробляти результати експерименту, обчислювати значення величин, знаходити похибки вимірювань, складати таблиці одержаних даних, готувати звіт про проведену роботу, записувати значення фізичних величин у стандартизованому вигляді тощо;

д) уміння інтерпретувати результати експерименту, описувати спостережувані явища й процеси, застосовуючи фізичну термінологію, подавати результати у вигляді формул і рівнянь, встановлювати функціональні залежності, будувати графіки, робити висновки про здійснене дослідження відповідно до поставленої мети.

Формування такого узагальненого експериментального вміння — процес довготривалий, який вимагає планомірної роботи вчителя й учнів упродовж усього навчання фізики в школі. Перелічені в програмі демонстраційні досліди й лабораторні роботи є мінімально необхідними і достатніми щодо вимог Державного стандарту базової і повної загальної середньої освіти. Проте залежно від умов і наявної матеріальної бази фізичного кабінету вчитель може замінювати окремі роботи або демонстраційні досліди рівноцінними, використовувати різні їхні можливі варіанти. Учитель може доповнювати цей перелік додатковими дослідами, короткочасними експериментальними завданнями, об’єднувати кілька робіт в одну залежно від обраного плану уроку. Окремі лабораторні роботи можна виконувати як учнівські навчальні проекти, а також за умови відсутності обладнання за допомогою комп’ютерних віртуальних лабораторій. Разом з тим модельний віртуальний експеримент повинен поєднуватися з реальними фізичними дослідами і не заміщувати їх.

Самостійне експериментування учнів, особливо в основній школі, необхідно розширювати, використовуючи найпростіше устаткування, інколи навіть саморобні прилади й побутове обладнання, дотримуючись правил безпеки життєдіяльності. Такі роботи повинні мати пошуковий характер, завдяки чому учні збагачуються новими фактами, узагальнюють їх і роблять висновки. У процесі такої діяльності вони мають навчитися ставити мету дослідження, обирати адекватні методи й засоби, планувати і здійснювати експеримент, обробляти його результати й робити висновки.

Ефективним засобом формування предметної й ключових компетентностей учнів у процесі навчання фізики є навчальні проекти. Тому практично в кожному розділі програми запропоновано орієнтовні теми навчальних проектів і зазначено кількість навчальних годин, яка виділяється на цей вид навчальної діяльності учнів на уроці.

Навчальні проекти розробляють окремі учні або групи учнів упродовж певного часу (наприклад, місяць або семестр) у процесі вивчення того чи іншого розділу фізики. Захист навчальних проектів, обговорення та узагальнення отриманих результатів відбувається на спеціально відведених заняттях. Оцінювання навчальних проектів здійснюється індивідуально, за самостійно виконане учнем завдання.

Виконання навчальних проектів передбачає інтегровану дослідницьку, творчу діяльність учнів, спрямовану на отримання самостійних результатів за консультативної допомоги вчителя. Учитель здійснює управління такою діяльністю і спонукає до пошукової діяльності учнів, допомагає у визначенні мети та завдань навчального проекту, орієнтовних прийомів дослідницької діяльності та пошук інформації для розв’язання окремих навчально-пізнавальних задач. Форму подання проекту учень обирає самостійно. Він готує презентацію отриманих результатів і здійснюють захист свого навчального проекту.

У процесі навчання фізики в основу навчально-пізнавальної діяльності учнів покладають плани узагальнювального характеру, за якими розкривається суть того чи іншого поняття, закону, факту тощо.

Так, зміст наукового факту (фундаментального досліду) визначають:

ü суть наукового факту чи опис досліду;

ü хто з учених встановив даний факт чи виконав дослід;

ü на підставі яких суджень встановлено даний факт або схематичний опис дослідної установки;

ü яке значення вони мають для становлення й розвитку фізичної теорії.

Для пояснення фізичного явища необхідно усвідомити:

ü зовнішні ознаки перебігу цього явища, умови, за яких воно відбувається;

ü зв’язок цього явища з іншими;

ü які фізичні величини його характеризують;

ü можливості практичного використання явища, способи попередження шкідливих наслідків його прояву.

Сутність поняття фізичної величини визначають:

ü властивість, яку характеризує ця величина;

ü її означення (дефініція) та формула, покладена в основу означення;

ü зв’язок даної величини з іншими;

ü одиниці фізичної величини;

ü способи її вимірювання.

Для закону це:

ü його формулювання, усвідомлення того, зв’язок між якими явищами він встановлює;

ü його математичний вираз;

ü дослідні факти, що привели до встановлення закону або підтверджують його справедливість;

ü межі застосування закону.

Для моделі необхідно:

ü дати її опис або навести дефініцію;

ü встановити, які реальні об’єкти вона заміщує;

ü з’ясувати, до якої конкретно теорії вона належить;

ü визначити, від чого ми абстрагуємося, чим нехтуємо, вводячи цю ідеалізацію;

ü з’ясувати межі та наслідки застосування цієї моделі.

Загальна характеристика фізичної теорії має містити:

ü перелік наукових фактів і гіпотез, які стали підставою розроблення теорії, її емпіричний базис;

ü понятійне ядро теорії, визначення базових понять і моделей;

ü основні положення, ідеї й принципи, покладені в основу теорії;

ü рівняння й закони, що визначають математичний апарат теорії;

ü коло явищ і властивостей тіл, які дана теорія може пояснити або спрогнозувати в перебігу;

ü межі застосування теорії.

Однією з найважливіших ділянок роботи в системі навчання фізики в школі є розв’язування фізичних задач. Задачі різних типів можна ефективно використовувати на всіх етапах засвоєння фізичного знання: для розвитку інтересу, творчих здібностей і мотивації учнів до навчання фізики, під час постановки проблеми, що потребує розв’язання, у процесі формування нових знань, вироблення практичних умінь учнів, з метою повторення, закріплення, систематизації та узагальнення засвоєного матеріалу, для контролю якості засвоєння навчального матеріалу чи діагностування навчальних досягнень учнів тощо. Слід підкреслити, що в умовах особистісно орієнтованого навчання важливо здійснити відповідний добір фізичних задач, який враховував би пізнавальні можливості й нахили учнів, рівень їхньої готовності до такої діяльності, розвивав би їхні здібності відповідно до освітніх потреб. За вимогами компетентнісного підходу вони повинні бути наближені до реальних умов життєдіяльності людини, спонукати до використання фізичних знань у життєвих ситуаціях.

Розв’язування фізичних задач зазвичай передбачає три етапи діяльності учнів:

1) аналіз фізичної проблеми або опис фізичної ситуації;

2) пошук законів, рівнянь та побудова математичної моделі задачі;

3) реалізація розв’язку та аналізу одержаних результатів.

На першому етапі відбувається побудова фізичної моделі задачі, що подана в її умові:

- аналіз умови задачі, визначення відомих параметрів і величин та пошук невідомого;

- конкретизація фізичної моделі задачі за допомогою графічних форм (рисунки, схеми, графіки тощо);

- скорочений запис умови задачі, що відтворює фізичну модель задачі в систематизованому вигляді.

На другому етапі розв’язування відбувається пошук зв’язків і співвідношень між відомими й невідомими величинами:

- вибудовується математична модель фізичної задачі, робиться запис загальних рівнянь, що відповідають фізичній моделі задачі;

- враховуються конкретні умови фізичної ситуації, описаної в задачі, здійснюється пошук додаткових параметрів;

- загальні рівняння приводяться до конкретних умов, відтворених в умові задачі, у формі рівняння записується співвідношення між невідомим і відомими величинами.

На третьому етапі здійснюються такі дії:

- аналітичне, графічне або чисельне розв’язання рівняння відносно невідомого;

- аналіз одержаного результату щодо його вірогідності й реальності, запис відповіді;

- узагальнення способів діяльності, які властиві даному типу фізичних задач, пошук інших шляхів розв’язання.

Для розвитку творчих здібностей учнів та їхнього розумового потенціалу важливою формою роботи є складання задач, які за фізичним змістом подібні до тих, що були розв’язані на уроці, наприклад обернених задач.

Одним із дієвих способів формування ціннісного ставлення учнів до фізичного знання є розкриття здобутків вітчизняної фізичної науки та висвітлення внеску українських учених у розвиток природничих наук, оскільки конкретні приклади досягнень українських учених, особливо світового рівня, мають вирішальне значення в національному вихованні учнів, формуванні в них почуття гордості за свою Батьківщину й український народ.

У процесі навчання фізики в основній школі варто на прикладі історико-біографічного матеріалу, тобто на прикладі життя й діяльності вчених-фізиків показати, що і як вони робили, щоб досягнути успіху в певній науковій галузі знання.

На уроках фізики необхідно розповісти про першого президента Україн­ської академії наук В.І.Вернадського й нинішнього президента Національної академії наук України академіка Б.Є.Патона, лауреатів Нобелівської премії в галузі фізики, які народилися або жили й працювали в Україні (Г. Шарпак, Л.Д.Ландау), та інших відомих учених (О.І.Ахієзер, А.К.Вальтер, А.Ф.Йоффе, Г.Д.Латишев, О.І.Лейпунський, Л.І.Мандельштам, В.І.Обреїмов, І.Пулюй, К.Д.Синельников, Л.В.Шубніков та ін.). Необхідно згадати також про відомих авіаконструкторів І.І.Сікорського, Ф.Ф.Андерса, О.В.Антонова, зупинитися на досягненнях українських учених в освоєнні космічного простору (М.І.Кибальчич, Ю.В.Кондратюк, С.П.Корольов, В.Н.Челомей, М.К.Янгель та ін.). Важливо також розкрити розвиток українських наукових шкіл: київської, харківської, одеської, львівської тощо, їхні напрями досліджень та основні досягнення.

7 клас

(70 годин, 2 години на тиждень, 4 години — резервних)

К-ть годин Зміст навчального матеріалу Державні вимоги до рівня загальноосвітньої підготовки учнів
1 Вступ Фізика як навчальний предмет у школі. Фізичний кабінет та його обладнання. Правила безпеки у фізичному кабінеті Учень/учениця: Знає й розуміє: правила безпеки у фізичному кабінеті; розташування й призначення основних зон шкільного фізичного кабінету та свого робочого місця; інструкції до приладів та установок. Виявляє ставлення й оцінює: необхідність вивчати фізику; роль шкільного кабінету в навчанні фізики.
7 Розділ 1. ФІЗИКА ЯК ПРИРОДНИЧА НАУКА. МЕТОДИ НАУКОВОГО ПІЗНАННЯ Фізика як фундаментальна наука про природу. Методи наукового пізнання. Зв’язок фізики з іншими науками. Речовина і поле. Початкові відомості про будову речовини. Молекули. Атоми. Початкові відомості про будову атома. Ядерна модель атома. Електрони. Йони. Етапи становлення та основні положення атомно-молекулярного вчення про будову речовини. Фізичні тіла й фізичні явища. Властивості тіл. Фізичні величини. Вимірювання. Засоби вимірювання. Похибки й оцінювання точності вимірювань. Міжнародна система одиниць фізичних величин. Історичний характер фізичного знання. Видатні вчені-фізики. Внесок українських учених у розвиток і становлення фізики. Фізика в побуті, техніці, виробництві. Лабораторні роботи: № 1. Ознайомлення з вимірювальними приладами. Визначення ціни поділки шкали приладу. № 2. Вимірювання об’єму твердих тіл, рідин i сипких матеріалів. № 3. Вимірювання розмірів малих тіл різними способами. Демонстрації 1. Приклади фізичних явищ: механічних, теплових, електричних, світлових тощо. 2. Моделі молекул. 3. Приклади застосування фізичних явищ у техніці. 4. Засоби вимірювання. Міри та вимірювальні прилади Учень/учениця: Знає й розуміє: сутність методів наукового пізнання; характерні ознаки фізичних явищ і їхню відмінність від інших явищ; основні види фізичних явищ, їхні приклади; призначення засобів вимірювання, відмінність міри й вимірювального приладу; поняття «точність вимірювання»; видатних вітчизняних і зарубіжних фізиків; розрізняє речовину й поле як фізичні види матерії. Уміє: записувати значення фізичної величини, використовуючи стандартну форму числа й префікси для утворення кратних і частинних одиниць; порівнювати значення фізичних величин; вимірювати час, лінійні розміри, площу поверхні й об’єм твердих тіл, рідин і сипких матеріалів найпростішими методами (рядів, мікрофотографій тощо); оцінювати точність вимірювання за абсолютною та відносною похибками. Виявляє ставлення й оцінює: місце фізики в системі інших наук; історичну обумовленість фізичного пізнання, внесок зарубіжних і вітчизняних науковців у становлення й розвиток фізичної науки; роль фізичного знання в різних галузях людської діяльності; значення міжнародної системи одиниць; достовірність одержаної інформації, етичність її використання
17 Розділ 2. МЕХАНІЧНИЙ РУХ Механічний рух. Відносність руху. Тіло відліку. Система відліку. Матеріальна точка. Траєкторія. Шлях. Переміщення. Рівномірний прямолінійний рух. Швидкість рівномірного прямолінійного руху. Рівняння руху. Графіки рівномірного прямолінійного руху. Нерівномірний прямолінійний рух. Середня швидкість нерівномірного руху. Рівномірний рух матеріальної точки по колу. Період обертання. Швидкість матеріальної точки під час руху по колу. Коливальний рух. Амплітуда коливань. Період коливань. Маятники. Лабораторні роботи № 4. Визначення періоду обертання та швидкості руху по колу. № 5. Дослідження коливань нитяного маятника. Демонстрації 1. Різні види руху. 2. Відносність руху, його траєкторії й швидкості. 3. Спідометр. Учень/учениця: Знає і розуміє: сутність механічного руху, його види; поняття швидкості, періоду обертання, обертової частоти, переміщення, амплітуди коливань, періоду та частоти коливань; одиниці часу, шляху, швидкості, періоду обертання, обертової частоти, періоду та частоти коливань; рівняння рівномірного прямолінійного руху, формули пройденого шляху, швидкості рівномірного прямолінійного руху, швидкості матеріальної точки під час руху по колу, середньої швидкості, періоду обертання; ознаки відносності руху. Уміє: розрізняти види механічного руху за формою траєкторії та характером руху тіла; визначати пройдений тілом шлях, швидкість руху, період обертання, частоту коливань нитяного маятника; представляти результати вимірювання у вигляді таблиці й графіків; розв’язувати задачі, застосовуючи формули швидкості прямолінійного руху тіла та руху по колу, середньої швидкості, періоду обертання, обертової частоти; будувати графіки залежності швидкості руху тіла від часу, пройденого шляху від часу для рівномірного прямолінійного руху; наводити приклади проявів механічного руху в природі та техніці. Виявляє ставлення й оцінює: взаємозв'язок різних способів представлення механічного руху; відмінність видів механічного руху; відносність та універсальність механічного руху.
1 Навчальний проект Визначення середньої швидкості нерівномірного руху Учень/учениця: Уміє: здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
26 Розділ 3. ВЗАЄМОДІЯ ТІЛ. СИЛА Явище інерції. Інертність тіла. Маса тіла. Густина речовини. Взаємодія тіл. Сила. Результат дії сили: зміна швидкості або деформація тіла. Види деформації. Сила пружності. Закон Гука. Пружинні динамометри. Додавання сил. Рівнодійна. Графічне зображення сил. Сила тяжіння. Вага тіла. Невагомість. Тертя. Сили тертя. Коефіцієнт тертя ковзання. Тертя в природі й техніці. Тиск твердих тіл на поверхню. Сила тиску. Тиск рідин і газів. Закон Паскаля. Сполучені посудини. Манометри. Насоси. Атмосферний тиск. Дослід Торрічеллі. Вимірювання атмосферного тиску. Барометри. Виштовхувальна сила в рідинах і газах. Закон Архімеда. Лабораторні роботи: № 6. Вимірювання маси тіл методом зважування. № 7. Визначення густини речовини (твердих тіл і рідин). № 8. Дослідження пружних властивостей тіл. № 9. Визначення коефіцієнта тертя ковзання. №10. З`ясування умов плавання тіла. Демонстрації 1. Досліди, що ілюструють явища інерції та взаємодії тіл. 2. Деформація тіл. 3. Додавання сил, спрямованих уздовж однієї прямої. 4. Прояви та вимірювання сил тертя ковзання, кочення, спокою. 5. Способи зменшення й збільшення сили тертя. 6. Залежність тиску від значення сили та площі. 7. Передавання тиску рідинами й газами. 8. Тиск рідини на дно і стінки посудини. 9. Зміна тиску в рідині з глибиною. 10. Сполучені посудини. 11. Вимірювання атмосферного тиску. 13. Будова і дія манометра. 14. Дія архімедової сили в рідинах і газах. 15. Рівність архімедової сили вазі витісненої рідини в об’ємі зануреної частини тіла. 16. Плавання тіл. Учень/учениця: Знає й розуміє: сутність взаємодії тіл, явища інерції; поняття маси, густини речовини, сили та різних її видів, деформації, тиску; одиниці цих величин і способи їх вимірювання; закони Гука, Паскаля, Архімеда; формули сили тяжіння, ваги тіла, сили тертя ковзання, сили тиску, виштовхувальної сили; причини виникнення атмосферного тиску; застосування сполучених посудин; залежність атмосферного тиску від висоти; способи зменшення і збільшення сили тертя; залежність сили пружності від деформації; залежність тиску на дно і стінки посудини від висоти стовпчика й густини рідини. Уміє: застосовувати набуті знання в процесі розв'язування фізичних задач та виконання лабораторних робіт; графічно зображати сили; користуватися динамометром, манометром, барометром, важільними терезами; Виявляє ставлення та оцінює: практичне значення застосування вивчених фізичних законів у природі та техніці; роль видатних учених у розвитку знань про механічний рух і взаємодію тіл.
1 Навчальний проект Розвиток судно- та повітроплавання Уміє: здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
11 Розділ 4. МЕХАНІЧНА РОБОТА ТА ЕНЕРГІЯ. Механічна робота. Потужність. Механічна енергія та її види. Закон збереження й перетворення енергії в механічних процесах та його практичне застосування. Машини й механізми. Прості механізми. Момент сили. Умови рівноваги важеля. Коефіцієнт корисної дії механізмів. «Золоте правило» механіки. Лабораторні роботи: № 11. Вивчення умови рівноваги важеля. № 12. Визначення ККД похилої площини. Демонстрації 1. Перетворення механічної енергії. 2. Умови рівноваги тіл. 3. Використання простих механізмів. Учень/учениця: Знає й розуміє: поняття механічної роботи, потужності, кінетичної і потенціальної енергії, моменту сили, коефіцієнту корисної дії та їхні одиниці, сутність закону збереження механічної енергії, умови рівноваги важеля, "золоте правило механіки", принцип дії простих механізмів; формули роботи, потужності, ККД простого механізму, кінетичної енергії, потенціальної енергії тіла, піднятого над поверхнею Землі, моменту сили. Уміє: застосовувати набуті знання в процесі розв'язування фізичних задач та виконання лабораторних робіт; вимірювати ККД простих механізмів; користуватися простими механізмами (важіль, нерухомий та рухомий блоки, похила площина); пояснювати«золоте правило» механіки; Виявляє ставлення й оцінює: прояв закону збереження та перетворення механічної енергії; ефективність використання машин і механізмів.
1 Навчальний проект. Становлення і розвиток знань про фізичні основи машин і механізмів. Уміє здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
1 Екскурсія Виявляє ставлення та оцінює проявифізичних явищ і процесів, спостережуваних під час екскурсії

8 клас (70 годин, 2 години на тиждень, 4 години — резервних)
/Files/images/poloski/49940293_1255645497_710323j4smf52bik.gif
30 Розділ 1. ТЕПЛОВІ ЯВИЩА Рух молекул і тепловий стан тіла. Температура. Термометри. Шкала Цельсія. Абсолютна шкала температур. Теплова рівновага. Залежність розмірів фізичних тіл від температури. Агрегатні стани речовини. Фізичні властивостей твердих тіл, рідин і газів. Внутрішня енергія. Два способи змінення внутрішньої енергії тіла. Види теплообміну. Кількість теплоти. Розрахунок кількості теплоти при нагріванні/охолодженні тіла. Кристалічні та аморфні тіла. Температура плавлення. Розрахунок кількості теплоти при плавленні/твердненні тіл. Рідкі кристали та їх використання. Полімери. Наноматеріали. Пароутворення і конденсація. Розрахунок кількості теплоти при пароутворенні/конденсації. Кипіння. Температура кипіння. Тепловий баланс. Рівняння теплового балансу. Згоряння палива. Розрахунок кількості теплоти внаслідок згоряння палива. Теплові двигуни. Принцип дії теплових двигунів. ККД теплового двигуна. Холодильні машини. Кондиціонер. Теплові насоси. Лабораторні роботи № 1. Вивчення теплового балансу за умов змішування води різної температури. № 2. Визначення питомої теплоємності речовини. № 3. Визначення питомої теплоти плавлення льоду.
Демонстрації 1. Дифузія газів, рідин. 2. Розширення тіл під час нагрівання. 3. Модель броунівського руху. 4. Зміна внутрішньої енергії тіла внаслідок виконання роботи. 5. Принцип дії теплового двигуна. 6. Моделі різних видів теплових двигунів. 7. Будова холодильної машини.
Учень/учениця: Знає й розуміє: сутність теплового руху молекул; поняття температури, внутрішньої енергії, кількості теплоти, питомої теплоємності, питомої теплоти плавлення, пароутворення, згоряння палива та їхні одиниці; особливості руху атомів i молекул речовини в різних агрегатних станах речовини; фізичні властивості твердих тіл, рідин і газів, приклади використання рідких кристалів, полімерів, наноматеріалів; способи вимірювання температури; принципи побудови температурної шкали Цельсія; два способи зміни внутрішньої енергії тіла; види теплообміну; види теплових машин; графіки теплових процесів (нагрівання/охолодження, плавлення/тверднення, пароутворення/конденсація); формули залежності розмірів фізичних тіл від температури, розрахунку кількості теплоти для різних теплових процесів, ККД теплової машини. Уміє: застосовувати набуті знання в процесі розв'язування фізичних задач та виконання лабораторних робіт; застосовувати рівняння теплового балансу, аналізуватиграфіки теплових процесів; пояснювати принцип дії теплових двигунів; користуватися термометром, калориметром; дотримуватись правил безпеки життєдіяльності під час проведення експериментів. Виявляє ставлення й оцінює: вплив теплових машин та інших засобів теплотехніки на довкілля; необхідність використання енергозбережувальних технологій; роль видатних учених у розвитку знань про теплоту.
2 Навчальний проект Екологічні проблеми теплоенергетики та теплокористування. Енергозбережувальні технології. Унікальні фізичні властивості води Уміє здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
30 Розділ 2. ЕЛЕКТРИЧНІ ЯВИЩА. ЕЛЕКТРИЧНИЙ СТРУМ
Електричні явища. Електризація тіл. Електричний заряд. Два роди електричних зарядів. Взаємодія заряджених тіл. Закон Кулона. Закон збереження електричного заряду. Електричне поле. Силова характеристика електричного поля. Електричний струм. Дії електричного струму. Провідники, напівпровідники, діелектрики. Струм у металах. Джерела електричного струму. Електричне коло та його основні елементи. Сила струму. Амперметр. Електрична напруга. Вольтметр. Електричний опір. Залежність опору провідника від його довжини, площі перерізу та матеріалу. Залежність опору провідника від температури. Резистори. Реостати. Закон Ома для ділянки кола. Послідовне й паралельне з’єднання провідників. Розрахунки простих електричних кіл. Робота й потужність електричного струму. Закон Джоуля — Ленца. Електронагрівальні прилади. Лічильник електричної енергії. Природа електричного струму в розчинах і розплавах електролітів. Закон Фарадея для електролізу. Електричний струм у газах. Застосування електролізу і струму в газах у практичній діяльності людини. Безпека людини під час роботи з електричними приладами й пристроями. Вплив електричного струму на людський організм. Лабораторні роботи № 4. Вимірювання сили струму та електричної напруги. № 5. Вимірювання опору провідника за допомогою амперметра й вольтметра. № 6. Дослідження електричного кола з послідовним з’єднанням провідників. № 7. Дослідження електричного кола з паралельним з’єднанням провідників
Демонстрації 1. Електризація різних тіл. 2. Взаємодія наелектризованих тіл. 3. Два роди електричних зарядів. 4. Подільність електричного заряду. 5. Будова й принцип дії електроскопа. 6. Електричний струм і його дії. 7. Провідники і діелектрики. 8. Джерела струму: гальванічні елементи, аку­мулятори, блок живлення. 9. Вимірювання сили струму амперметром. 10. Вимірювання напруги вольтметром. 11. Залежність сили струму від напруги на ділянці кола й від опору цієї ділянки. 12. Вимірювання опору. 13. Залежність опору провідників від довжини, площі поперечного перерізу й матеріалу. 14. Будова й принцип дії реостатів. 15. Послідовне й паралельне з’єднання про­відників. 16. Електроліз. 17. Струм у газах
Учень/учениця: Знає й розуміє: сутність електризації, взаємодії заряджених тіл, природи електричного струму в різних середовищах; поняття електричного заряду, напруженості електричного поля, сили струму, напруги, опору провідника, роботи і потужності електричного струму, електрохімічного еквіваленту та їхні одиниці; закони Кулона, збереження електричного заряду, Ома для ділянки кола, Джоуля-Ленца, Фарадея для електролізу; умови виникнення електричного струму; види електричного розряду в газах; формули напруженості електричного поля, сили струму, напруги, опору для послідовного й паралельного з’єднання провідників, залежності опору провідника від його довжини, площі перерізу та питомого опору матеріалу, від температури, роботи і потужності електричного струму. Уміє: застосовувати набуті знання в процесі розв'язування фізичних задач та виконання лабораторних робіт; графічно зображати електричне поле, схеми простих електричних кіл; складати прості електричні кола; користуватися вимірювальними приладами для визначення силу струму, напруги, опору; розраховувати спожиту електричну енергію; дотримуватись правил безпеки життєдіяльності під час роботи з електричними приладами й пристроями. Виявляє ставлення і оцінює: прояви електричного поля, параметри струму, безпечні для людського організму, можливості захисту людини від ураження електричним струмом; роль видатних учених у розвитку знань про електрику; значення енергії електричного струму в сучасному житті;
2 Навчальний проект Електрика в житті людини. Сучасні побутові та промислові електричні прилади. Уміє здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
2 Екскурсії Виявляє ставлення та оцінює проявифізичних явищ і процесів, спостережуваних під час екскурсії
9 клас (105/87 годин, 3/2,5 години на тиждень, 4 години — резервних)[*]
/Files/images/poloski/49940293_1255645497_710323j4smf52bik.gif
15/12 Розділ 1. МАГНІТНІ ЯВИЩА Магнітні явища. Постійні магніти, взаємодія магнітів. Магнітне поле. Магнітне поле Землі. Дослід Ерстеда. Силова характеристика магнітного поля. Магнітні властивості речовин. Гіпотеза Ампера. Магнітне поле провідника зі струмом. Магнітне поле котушки зі струмом. Електромагніти. Дія магнітного поля на провідник із струмом. Сила Ампера. Дія магнітного поля на рамку зі струмом. Електродвигуни. Електровимірювальні прилади. Дія магнітного поля на рухомий електричний заряд. Сила Лоренца. Прояви та застосування сили Лоренца в природі і техніці. Явище електромагнітної індукції. Досліди Фарадея. Індукційний електричний струм. Генератори індукційного струму. Промислові джерела електричної енергії. Лабораторна робота № 1. Складання та випробування електромагніту. Демонстрації 1. Постійні магніти. 2. Спектри магнітних полів. 3. Магнітне поле Землі. 4. Дослід Ерстеда. 5. Електромагніт. 6. Дія магнітного поля на струм. 7. Електродвигун. 8. Явище електромагнітної індукції. 9. Генератори індукційного струму Учень/учениця: Знає й розуміє: сутність магнітної взаємодії, матеріальності магнітного поля, електромагнітної індукції, природу магнетизму, гіпотезу Ампера; поняття індукції магнітного поля та її одиниці; формули сили Ампера, Лоренца; досліди Ерстеда, Фарадея, принцип дії електромагніту, електродвигуна, електровимірювальних приладів; прояви магнітного поля Землі; спосіб промислового одержання електричного струму. Уміє: застосовувати набуті знання в процесі розв'язування фізичних задач та виконання лабораторних робіт; графічно зображати магнітне поле; застосовувати правила свердлика, лівої руки; складати електромагніт. Виявляє ставлення і оцінює: прояви магнітного поля; роль видатних учених у розвитку знань про магнетизм; вплив магнітного поля на живі організми.
1 Навчальний проект Магнітні матеріали та їх використання Уміє здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
18/13 Розділ 2. СВІТЛОВІ ЯВИЩА Світлові явища. Джерела й приймачі світла. Швидкість поширення світла. Світловий промінь і світловий пучок. Закон прямолінійного поширення світла. Сонячне та місячне затемнення. Відбивання світла. Закон відбивання світла. Плоске дзеркало. Заломлення світла на межі поділу двох середовищ. Закон заломлення світла. Дисперсія світла. Спектральний склад природного світла. Кольори. Лінзи. Оптична сила й фокусна відстань лінзи. Формула тонкої лінзи. Отримання зображень за допомогою лінзи. Найпростіші оптичні прилади. Окуляри. Об’єктиви. Зорова труба. Око як оптичний прилад. Зір і бачення. Вади зору та їх корекція. Лабораторні роботи № 2. Дослідження відбивання світла за допомогою плоского дзеркала. № 3. Дослідження заломлення світла. № 4. Визначення фокусної відстані та оптичної сили тонкої лінзи. Демонстрації 1. Прямолінійне поширення світла. 2. Відбивання світла. 3. Зображення в плоскому дзеркалі. 4. Заломлення світла. 5. Хід променів у лінзах. 6.Утворення зображень за допомогою лінзи. 8. Будова та дія оптичних приладів (фотоапарата, проекційного апарата тощо). 9. Модель ока. 10. Інерція зору. Учень/учениця: Знає й розуміє: сутністьсвітлових явищ у природі та техніці, види джерел світла; поняття світлового променя, точкового джерела світла, тонкої лінзи, фокусної відстані, оптичної сили лінзи, показника заломлення світла, дисперсії світла,швидкості поширення світла; закони прямолінійного поширення, відбивання й заломлення світла; формулу тонкої лінзи, принцип дії найпростіших оптичних приладів; вади зору, способи їхньої корекції, методи профілактики захворювань зору; одиниці оптичної сили та фокусної відстані лінзи, спектральний склад природного світла. Уміє: застосовувати набуті знання в процесі розв'язування фізичних задач та виконання лабораторних робіт; пояснювати причини сонячних i місячних затемнень; будувати хід променів при побудові зображень, отриманих за допомогою плоского дзеркала і тонкої лінзи, вимірювати фокусну відстань та визначати оптичну силу лінзи; користуватися лінзами; складати найпростіші оптичні прилади. Виявляє ставлення і оцінює: значення світла для життя на Землі; роль видатних учених у розвитку знань про світло.
1 Навчальний проект Складання найпростішого оптичного приладу Уміє: здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
8/8 Розділ 3. МЕХАНІЧНІ ТА ЕЛЕКТРОМАГНІТНІ ХВИЛІ. Виникнення і поширення механічних хвиль. Звукові хвилі. Швидкість поширення звуку, довжина і частота звукової хвилі. Гучність звуку та висота тону. Вібрації і шуми та їх вплив на живі організми. Інфра- та ультразвуки. Електромагнітне поле і електромагнітні хвилі. Швидкість поширення, довжина і частота електромагнітної хвилі. Залежність властивостей електромагнітних хвиль від частоти. Шкала електромагнітних хвиль. Електромагнітні хвилі в природі й техніці. Фізичні основи сучасних бездротових засобів зв’язку та комунікацій. Розвиток уявлень про природу світла. Демонстрації 1. Поширення механічних коливань у пружному середовищі. 2. Залежність гучності звуку від амплітуди коливань. 3. Залежність висоти тону від частоти коливань. 4. Випромінювання і поглинання електромагнітних хвиль. 5. Шкала електромагнітних хвиль. Учень/учениця: Знає й розуміє: сутність хвильового процесу, умови утворення механічних та електромагнітних хвиль; поняття довжини і частоти хвилі, гучності звуку та висоти тону; формулу швидкості поширення хвилі; принцип звукової та радіолокації. Уміє: розв’язувати задачі за допомогою формул взаємозв’язку довжини, частоти й швидкості поширення хвилі, формул розрахунку відстані до перешкоди за проміжком часу запізнення відбитого сигналу; порівнювати властивості звукових та електромагнітних хвиль різних частот. Виявляє ставлення та оцінює: вплив вібрацій і шумів на живі організми; значення сучасних засобів зв’язку та комунікацій.
1 Навчальний проект Звуки в житті людини. Застосування інфра- та ультразвуків у техніці. Уміє здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
12/10 Розділ 4. ФІЗИКА АТОМА ТА АТОМНОГО ЯДРА. ФІЗИЧНІ ОСНОВИ АТОМНОЇ ЕНЕРГЕТИКИ Сучасна модель атома. Досліди Резерфорда. Протонно-нейтронна модель ядра атома. Ядерні сили. Ізотопи. Використання ізотопів. Радіоактивність. Радіоактивні випромінювання, їхня фізична природа і властивості. Активність радіоактивної речовини. Період напіврозпаду радіоактивного нукліда. Йонізаційна дія радіоактивного випромінювання. Природний радіоактивний фон. Поглинута та експозиційна дози. Потужність радіоактивного випромінювання. Дозиметри. Поділ важких ядер. Ланцюгова ядерна реакція поділу. Ядерний реактор. Атомні електростанції. Атомна енергетика України. Екологічні проблеми атомної енергетики. Термоядерні реакції. Енергія Сонця й зір. Демонстрації 1. Модель досліду Резерфорда. 2. Модель атома. Модель ядра атому. 3.Принцип дії лічильника йонізаційних частинок. 4. Дозиметри Учень/учениця: Знає й розуміє: сутність сучасних поглядів про будову атома та ядра, дослідів Резерфорда, радіоактивності, йонізаційної дії радіоактивного випромінювання; поняття ізотопу, нукліда, активності та періоду піврозпаду радіоактивного нукліда, дози випромінювання, ядерної та термоядерної реакцій; формули поглинутої та експозиційної дози, потужності радіоактивного випромінювання; механізм ланцюгових ядерних реакцій; принцип дії ядерного реактора; механізми ядерних процесів у Сонця й зір; негативний вплив радіоактивного випромінювання на живі організми. Уміє: пояснити йонізаційну дію радіоактивного випромінювання; користуватися дозиметром. Виявляє ставлення та оцінює: переваги та недоліки, перспективи розвитку атомної енергетики; використання термоядерного синтезу; доцільність використання атомної енергетики та її вплив на екологію; ефективність методів захисту від впливу радіоактивного випромінювання.
1 Навчальний проект Складання радіаційної карти регіону Уміє здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
30/24 Розділ 5. РУХ І ВЗАЄМОДІЯ. ЗАКОНИ ЗБЕРЕЖЕННЯ В МЕХАНІЦІ Рівноприскорений рух. Прискорення. Графіки прямолінійного рівноприскореного руху. Інерціальні системи відліку. Закони Ньютона. Закон всесвітнього тяжіння. Прискорення вільного падіння. Рух тіла під дією сили тяжіння. Рух тіла під дією кількох сил. Взаємодія тіл. Імпульс. Закон збереження імпульсу.Реактивний рух. Фізичні основи ракетної техніки. Досягнення космонавтики. Застосування законів збереження енергії і імпульсу в механічних явищах. Межі застосування класичної механіки. Лабораторна робота №5. Дослідження руху тіла, кинутого горизонтально. Учень/учениця: Знає й розуміє: сутність рівноприскореного руху, інерціальної системи відліку; поняття прискорення, імпульсу тіла, прискорення вільного падіння; перший, другий та третій закони Ньютона, закон всесвітнього тяжіння, закон збереження імпульсу; формули прискорення, імпульсу тіла; рівняння прямолінійного рівноприскореного руху. Уміє: застосовувати набуті знання в процесі розв'язування фізичних задач та виконання лабораторних робіт;характеризувати рух під дією кількох сил, будувати графіки залежності швидкості та переміщення від часу для прямолінійного рівноприскореного руху. Виявляє ставлення й оцінює: роль законів Ньютона у розвитку фізичного знання, фундаментальний характер законів збереження в механіці; межі застосування класичної механіки; досягнення людства та внесок України в освоєння космосу.
4 Навчальні проекти 1. Людина і Всесвіт. 2. Фізика в житті сучасної людини. 3. Сучасний стан фізичних досліджень в Україні та світі. 4. Україна – космічна держава. Уміє: здобувати інформацію під час планування, проведення і аналізу результатів виконання проекту.
УЗАГАЛЬНЮВАЛЬНІ ЗАНЯТТЯ
4/3 ФІЗИКА ТА ЕКОЛОГІЯ Фізика і проблеми безпеки життєдіяльності людини. Фізичні основи бережливого природокористування та збереження енергії. Альтернативні джерела енергії. Демонстрації Фрагменти відеозаписів науково-популярних телепрограм щодо сучасних проблем екології та енергетики в Україні та світі Учень/учениця: Знає й розуміє: фізичні параметри (рівні) фізичних форм забрудненості довкілля (механічної, шумової, електромагнітної, радіаційної); механізми впливу сонячного випромінювання на життєдіяльність організмів, механізми йонізаційного впливу на них, електромагнітного смогу й радіоактивного випромінювання; фізико-технічні основи роботи засобів попередження та очищення довкілля від викидів; фізичні основи безпечної енергетики. Уміє визначати фізичні параметри безпечної життєдіяльності людини за довідниковими джерелами. Виявляє ставлення й оцінює: екологічну виваженість використання фізичного знання в суспільному розвитку людства, вплив досягнень сучасної фізики на стан та майбутнє існування життя на Землі; причинно-наслідкові зв’язки у взаємодії людини, суспільства і природи.
4/3 ЕВОЛЮЦІЯ ФІЗИЧНОЇ КАРТИНИ СВІТУ Еволюція фізичної картини світу. Вплив фізики на суспільний розвиток та науково-технічний прогрес Демонстрації Фрагменти відеозаписів науково-популярних телепрограм щодо сучасних наукових і технологічних досягнень в Україні та світі Учень/учениця: Знає й розуміє: приклади застосування фізичних знань у сфері матеріальної й духовної культури; історичний шлях розвитку фізичної картини світу; роль фізики як фундаментальної науки сучасного природознавства; фізичну картину світу; Уміє робити висновки про визначальний вплив досягнень сучасної фізики на зміст науково-технічної революції. Виявляє ставлення й оцінює: роль фізичних методів дослідження в інших природничих науках; вплив фізики на суспільний розвиток та науково-технічний прогрес.
2 Екскурсії Виявляє ставлення та оцінює проявифізичних явищ і процесів, спостережуваних під час екскурсії

[*] Оскільки відповідно до наказу МОНмолодьспорту України від 03.04.2012 р., № 409 вивчення фізики в основній школі здійснюється за двома модифікаціями типових навчальних планів, якими в 9 класі передбачено 3 або 2,5 години на тиждень, бюджет часу на відповідні розділи курсу фізики подається через риску з урахуванням запланованого навчального навантаження.


Кiлькiсть переглядiв: 4788

Коментарi

Для того, щоб залишити коментар на сайті, залогіньтеся або зареєструйтеся, будь ласка.